skip to main content


Search for: All records

Creators/Authors contains: "Hamann, Danielle M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. A series of ${\left\hbox[ {{{\left\hbox( {{\rm{SnSe}}} \right\hbox)}_{1 \hbox+ \delta }}} \right\hbox]_m}{\left\hbox[ {{\rm{TiS}}{{\rm{e}}_2}} \right\hbox]_2}$ heterostructure thin films built up from repeating units of m bilayers of SnSe and two layers of TiSe 2 were synthesized from designed precursors. The electronic structure of the films was investigated using X-ray photoelectron spectroscopy for samples with m = 1, 2, 3, and 7 and compared to binary samples of TiSe 2 and SnSe. The observed binding energies of core levels and valence bands of the heterostructures are largely independent of m . For the SnSe layers, we can observe a rigid band shift in the heterostructures compared to the binary, which can be explained by electron transfer from SnSe to TiSe 2 . The electronic structure of the TiSe 2 layers shows a more complicated behavior, as a small shift can be observed in the valence band and Se3 d spectra, but the Ti2 p core level remains at a constant energy. Complementary UV photoemission spectroscopy measurements confirm a charge transfer mechanism where the SnSe layers donate electrons into empty Ti3 d states at the Fermi energy. 
    more » « less